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1 INTRODUCTION 

1.1 Overview 

In this research we will study the pull production system based on the Just In 

Time doctrine with emphasis on stochastic modeling under Markovian assumptions. 

1.1.1 The Push System 

This is the traditional production system. The production requirement is met 

by issuing various production schedules to all stations. The stations produce the 

parts in accordance with their schedule, with the preceding station supplying the 

parts to its following station, and so on. According to Monden [25], it is difficult, 

under this system, to promptly adapt to changes caused by trouble at some sta­

tions or by demand fluctuations, without carrying high inventory at all stages of 

production. 

1.1.2 Just-In-Time 

"Just-In-Time" is a philosophy or a doctrine more than a method. It includes 

all the activities from market research to the design of product, and on through 

production to delivery to the customer. The objective of the JIT doctrine is to 

avoid waste in all aspects of a production system. The ideal JIT plant is visualized 
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as a series of stations whether physically located in series or not [31]. To implement 

the JIT doctrine, it is especially important to reduce setup time, reduce lot size and 

assure quality output upon demand. 

1.1.3 The Pull System 

The Pull system is a way of implementing the JIT doctrine. It is a revolutionary 

system according to Monden [25], in the sense that subsequent stations demand 

parts from preceding stations. In particular, the final assembly line is responsive 

to the timing and quantity of parts required, and goes to the preceding station to 

obtain the necessary parts in the necessary quantity at the necessary time for part 

assembly. Terada and Kimura [36] added to the above that the pull system is to 

hold the inventory at a certain level at each stage. 

1.1.4 Kanban 

This is a production control system that can help apply the pull system concept. 

It involves a card in a vinyl pocket which carries the following information: part 

number, quantity per container, preceding station and succeeding station. There 

are two kinds of Kanban cards: 1-in station Kanban. 2- inter-station Kanban. 

According to [29], [32], [36], the procedure of using the two Kanban cards is as 

follows: 

1. To install the Kanban system the manager assigns a certain number of Kanban 

cards to each station of the process. 

2. When a unit is to be used, an attached inter-station card is detached from the 

unit, and is taken to the preceding station. This constitutes the authorization 
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to pick up the required (replacement) unit. 

3. The in-station card is removed from the unit, and the inter-station card is 

attached to it; it is then moved forward to where it is to be used. 

4. The in-station card is hung on a board; this unattached in-station card au­

thorizes the production of another unit. 

The Kanban system is built on the following assumptions, which may be difficult 

to satisfy in particular instances: 

• The setup and order costs are negligible, which is not always the case. 

• Kanban depends on worker experience because it is controlled by constant 

visual monitoring. 

• All operations are linked in chains which feed the final assembly line. 

1.2 Previous Research 

1.2.1 Pull Production Systems 

Most of the published literature in this area is focused on the explanation of 

the system , its constraints, prerequisites and applications [28], [31], [35]. However, 

there are just two publications that offers mathematical modeling of the system. 

Terada and Kimura [36] provides several basic equations for the Kanban system in 

a multi-stage serial production system. He finds that, in case of the pull system, 

the production fluctuation will not be amplified in the preceding stages if the size of 

order is kept small enough. Bitran and Chang [5] present an optimization model for 
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the Kanban system in a multi-stage assembly production setting; they also offer a 

solution procedure. Both of the above mentioned papers consider the deterministic 

model with constant lead time. 

1.2.2 Queuing Networks and Production System 

The queuing network is a related area of study, and our model can be considered 

as a special open queuing network. The earliest work in this area belongs to Hunt 

[22] who obtained the maximum possible utilization and the expected number of 

customers in the system where the stations have exponential service times. Avi-

itzhak [3] studied tandem queues with no intermediate queue and with arbitrarily 

distributed service times at both servers. Konheim and Reiser [23] developed an 

algorithm to find the steady state probabilities numerically in a system of two queues 

with finite buffer. Foster and Perros [13] derived exact and approximate bounds for 

the mean blocking time in queueing networks with exponential service times and 

finite buffer. 

Hillier and Boling [20] have developed an approximate method to calculate 

the long-run mean output rate and the average number of customers in a system 

of finite queues in series having exponential or Erlang service time. An analytical 

approximation method for open networks of queues was proposed by Altiok [1]. His 

analysis is based on the method of decomposition where the total network is broken 

down into queues which are analyzed to find the steady state probabilities of the 

number of customers at each station. 

A matrix solution for the steady state joint queue length distribution of two 

finite queues in tandem was proposed by Wong, GifRn and Disney [37] . Neuts [30] 
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used transform methods and matrix geometry to solve the problem of two station 

with finite waiting queue between them. 

1.2.3 Production/Inventory Control Systems 

The work in this area is diverse, but we will review the related literature only. 

Love [24] considered an inventory model consisting of two stages coupled together 

so that the reorder demand of stage 1 becomes the sales of stage 2. He presented 

this two-stage model as a finite Markov chain, and obtained the state equations. He 

presented an algorithm for finding the inventory policy that minimizes the expected 

cost. Barten [4] developed a queueing simulator for determining optimum inventory 

levels for any sequence of operations with finite storage. Elsayed and Hwang [10] 

analyzed a two-stage production line system with a buffer storage. Their concern 

was the reliability and efficiency of the production system. Solberg [34] presented 

a capacity planning model with stochastic processing time and compared it to a 

corresponding deterministic model. 

1.3 Problem Definition 

There is a growing interest among industrial corporations in adopting and 

applying the JIT doctrine. Therefore, the need has arisen to evaluate and analyze 

this new approach. The Japanese,and now more and more others, employ the pull 

system to implement the JIT doctrine, so that a good modeling of the system is 

timely. Since there are sources of uncertainty in the system due to customer demand 

fluctuation and production and transportation problems, conclusions drawn from a 

stochastic model of the pull production system will be especially relevant for real-
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life decisions concerning allocation of units between stations and the optimizing of 

production rates. Such a model also will be of help in ascertaining how the pull 

system is related to the conventional push system. 

In this dissertation we develop a stochastic model of the multi-stage pull system, 

primarily as a chain of stations in series. We consider the uncertainty in production 

and transportation time, as well as fluctuation in final demand, using a stochastic 

model of a multi-station system with finite capacities Rj^ at stations i (i=l,2,...,N). 

We are interesting in analyzing and optimizing the following measures of per­

formance and effectiveness for this model: 

• The probability that the final station is out of units 

• The mean units at the final station. 

• The system responsiveness, measured as the ratio of the effective production 

rate of the first station to the required demand at the final station. 

Although processing and demand times are assumed exponential, the limitation 

imposed by station capacity will cause the output process not to be poisson. For 

this reason, closed form solutions for stationary probabilities of the system are 

not available and approximations and numerical methods, among them a certain 

separation-of-variable technique traceable to Hunt, are used. 

The first chapter introduces the pull production system and gives a survey of 

the relevant literature. 

The mathematical model is derived and solved in the second chapter, and 

various methods of solution are utilized and developed. System performance is 

examined and an optimization of resource allocation is presented. 
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The third chapter presents pull production system variants comprising one-at-

a-time service and larger-than-unit lot sizes. 

The push production system is defined and modeled in the fourth chapter; here 

a new method for modeling the traditional push system is introduced, that reduces 

the Markovian state number 

In the fifth chapter a duality phenomenon between the pull and a specially 

defined push system is presented and discussed. 

Tree structures for the pull production systems are introduced and modeled in 

the sixth chapter. 

The seventh chapter presents conclusion and ideas for research extensions. 
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2 MODELING THE MULTI-STAGE PULL PRODUCTION 

SYSTEM I 

2.1 Introduction 

It is a known fact in management that a smaller plant will outperform a larger 

plant in every important measure of performance [29]. Many Japanese businesses 

operate large physical facilities that are focused. Focus is accomplished by carving 

out many small plant activities within a large facility [29]. Each plant is visualized 

as a series of stations on an assembly lines, whether physically located in series or 

not [31]. The cellular manufacturing system (CMS) which is described by Black 

[6] emphasize the same idea. The CMS is composed of manufacturing cells, which 

process a group or family of parts. The cell has a U-shape so that even one worker 

can handle it. The cells are linked with Kanban, compatibly with the idea of Just-

In-Time material flow. A variety of cell geometries can be used; this research will 

concentrate on modeling a series of stages in a production system, but will also 

address tree structure modeling, as presented in Chapter 6. 

2.2 Modeling Approach 

The production system studied here is a series of N work stations functioning 

as a pull system. Each work station is assumed to consist of a processing and a 
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local storage function. In the pull system, stations withdraw units from preceding 

stations at the required time, in the required quantity. The word "unit" here means 

production unit, which may be an individual workpiece, assembly, batch, pallet 

load and so forth. Whatever the system processes and moves as a together will be 

treated as a unit [34]. 

As mentioned in the first chapter, Kanban are used to implement the pull idea 

in a production system. See Figure 2.1 for model illustration. 

In the beginning of the process, the manager assigns a few Kanban (units) 

to each station^. When a demand occurs, it will remove one unit^ from the local 

storage of the furthest downstream station, the Kanban card is detached, and is sent 

to the production function of that station, triggering the processing of a replacement 

unit. In turn, this station will withdraw a unit from the preceding station and so 

on. 

Three points are presented here to illustrate the congruence between the model 

developed in this thesis and the pull (Kanban) production system: 

1. The total number of Kanbans circulating between stations is unchanged. Con­

sequently, by controlling the number of circulating Kanbans and requiring that 

every unit has a Kanban attached to it, managers can fix the capacity of a 

station. 

2. The movement of Kanbans is triggered by the withdrawal of units from a 

station by its immediate successor. In other words, a particular station will 

^ We are going to call this value the capacity of the station or just station capacity. 
^We are assuming the ideal JIT with lot size equal to one. In a later chapter we 

will discuss the case of greater lot size. 
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produce to replenish what has been withdrawn by the successor one. 

3. Circulating of Kanban causes all stations in a production system to be chained 

together. 

2.2.1 Assumptions 

The above described pull (Kanban) production system will be stochastically 

modeled under the following assumptions: 

1. The system consists of N serial stations. Station 1 is the first station up 

stream and station N is the final station downstream. 

2. The first station has an infinite supply. 

3. Processing times are exponentially distributed with effective processing rate 

responsive to local storage level. 

4. Time between demand is exponentially distributed with fixed rate. 

5. The transportation time between stations and warmup time of machines are 

negligible^. 

6. The stations' processing times are statistically independent of each other. 

7. The production capacity at each station is always sufficient ^ (In Section 3.1 

we will consider the one-at-a-time model.) 

^Due to the fact that under the JIT doctrine, the stations are close to each other 
with limited work-in-process space. 

''This implies that there are enough machines or servers to handle the work 
simultaneously. 
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8. Orders can "cross" [18]. 

9. Station capacities are fixed 

Before we model the system it is appropriate to state the analogy between 

queueing systems and the pull production systems. 

2.2.2 Analogy Between Queueing Systems and Pull Production Sys­

tems 

It is clear that we are dealing with a system which is related to queueing sys­

tems, but with different interpretation of the mathematical variables. The analogy 

between the two types of systems may be detailed as follows: 

1. The system level (number of units) decreases with demand arrival in the pull 

system while the queue size increases with customer arrival in the queueing 

system. 

2. The "service operation" in queueing corresponds to the process of producing 

a unit in the pull system. 

3. The "service time" in the queueing system corresponds to the time required 

to replace the unit in the pull system. It is the interval between the time 

when the unit is withdrawn from the subsequent station and the time a new 

unit arrives to fill the vacancy caused by the earlier withdrawal. 

4. The "queue" in the pull system is the number of the unfilled orders sent by the 

succeeding station to the subsequent one for units to replace those withdrawn. 
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5. A "blocking" state in a queuing system corresponds to a "starving/null" state 

in the pull system. To elaborate on this, the "blocking" means that a unit 

that finished service at a certain station cannot move forward because the 

queue is full, and has to block its service until a unit finishes service at the 

next station. On the other hand, "starving" means that a certain station has 

unfilled orders that equal its maximum capacity, so that the station will be 

in the null state, unable to release units to the subsequent station, until it 

receives a unit from its preceding station (an order is filled). 

2.3 The Model 

To derive the model, we assume that the system is Markovian. A Markov proc­

ess can be roughly defined as [9]: "A process whose future probabilistic evolution 

after any time depends only on the state of the system at time and is 

independent of the history of the system prior to time Since we assume 

that all the production times as well as demand inter-arrival times are exponential, 

it is clear that the Markovian assumption applies. Moreover, the process has the 

additional birth-and-death property that the net change across an infinitesimal time 

interval can never be other than -1,0, 4-1. The system has discrete state space which 

is the amount of units in each station, and continuous time parameter. 

2.3.1 State Explanation and Model Formulation 

The two-station model will be studied first and that will lead to the general 

model with N stations. The system is represented by a feiite continuous Markov 

chain with state space S = {(wi,n2) : 0 < < oo,0 < mg < ^2 < oo}. 
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Where is the number of units at station i  and is the maximum capacity of 

station i in units. This Markov chain has the following properties; 

Homogeneous The probability of moving from one state to another in a fixed unit 

of time is independent of the starting time. Hence, 

+ ft.) = p^j*(0,ft.) 

where, t  + h) = P( x{t + h) = i  \ x(t) = j) and z(<) is a Markov chain. 

Irreducible There a positive probability that state j  can be reached from state 

i in some finite number of transitions. In other words, all pairs af states 

intercommunicate. 

Ergodic A homogeneous Markov chain is ergodic if 

independent of i  for all j  and = 1, > 0. The vector tt = 

(t tojTt i ,  . . . )  is  cal led the s ta t ionary dis t r ibut ion.  

Recurrent The probability of ultimately returning to state i  from state i  is equal 

to 1. 

When the Markov chain is irreducible, ergodic and recurrent, then the stationary 

probabilities are positive. Moreover, as indicated above, these stationary probabil­

ities are limiting probabilities, independently of the initial condition. Since we are 

interested in the process after a long period of time, we we will concentrate on these 

stationary limiting probabilities of the process. 
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Figure 2.2 shows the transition diagram of the system. When the production 

time at station 1 is exponential with mean l/^j, tha production time at station 

2 is exponential l/fg and the demand rate is Poisson with rate A, the stationary 

probabilities of the system satisfy: 

For — 1,... ,0 and n2 = 0 

- n i )  +  8 2 * m i n { R 2  -M2,^l)]^i,0 = 

(-^1 - ("1 -

+ (2-1) 

For nj = iEj — 1,...,0 and n2 = ^^2'-^2 ~ • • • ' ̂  

[A + -ni) + 02 *min{R2 - n2,Tii)] Pni,n2 = 

6l(ill - nj + 1)-Pni-1,712 

+ ^2 * rnin{R2 -n2 + l,ni + l)P„^+i^„2-l 

+ ^Pni,n2+1 (2*2) 

and the boundary conditions are: 

P-l,n2 = 0 

^«1,-1 = " 

•Pjîl+1,712 = 0 

" 

We can expand these equations to the general case with N stations as follows: 

For — 1,,..,0 [z = 1,2,3,... ,iV — 1] 

and n jy = 0 

[« l*( /2 l -n i )  +  62*Tnm(i?2-n2 ,n i )  +  . . .  +  5jy*mw(J2;V,n jv_ i ) ]P„ j ,n2 , . . . ,0  =  
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(R.-l.Rg) 

(n.+1,11^-1) i  ̂  à 6 (n^+l.'Rg) 

/ 

(0»^2^ 
g » A 

— --(O^Rg-l) > 

Figure 2.2: Transition diagram for 
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+ ^1 * (-^1 ~ ^1 + 1,712,.")^]^ 

+ ^2 * mm(R2 — ^2 ^)"1 

+1,712—1,."^^ 

+ 

+ è]^_i*min{Rj\i_i-njiif_i+l,n^_2 + l) 

^ni,n2,...,n]^_2+l,nj^_l-l,nj^ 

For =/2^,i2^ — 1,. . .  ,0 [i = 1,2,3,. . . ,  iV — 1] 

and «jv = R]\j^, -Rjv — 1,..., 1 

[A + * (^1 -  "l) + ̂ 2 * -  M2,mi) 4 f-

6^T * min{Rjsf - njV'^iV-l)]-^rai>«2'->^iV = 

^Pni,n2,...,n^+1 

+ * {Ri -711 + 1)^1-1,712, -,»jV 

+ 62* min{R2 - 712 + l.n  ̂+ l)Pni+l,n2-l,...,n^ 

+ 

+ 6^ * min{R^ — + l ,7ijy_x + 1) 

^ni,n2,...,npf_l+l,nj\f-l (2-4) 

and the boundary conditions are: 
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^ l,?i2v*î^JV 0 

0 

,7i2v*"> 1 0 

0 

0 

^ 1 ^  

2.4 Methods of Solution 

We solve the above system of equations for the stationary distribution, using 

various methods which include numerical analysis methods, a method using a re­

lated discrete time chain, and a method of variable separation which was presented 

first by Hunt [22]. 

2.4.1 Numerical Methods 

The transition matrix for this system has a special structure and is sparse. 

For large systems, this matrix tend to be very large and needs a special computer 

storage method, so that most of the zero elements can be excluded. As a matter 

of fact, the size of the transition matrix grows exponentially as the system grows. 

The transition matrix size can be expressed as follows: 

N 
matrix size = MS = JJ (1 + iZj), 

i=l 
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where N is the number of stations and the maximum capacity for station i. 

However, out of the MS^ elements, fewer than [(1 + N) * MS] are nonzero. Given 

the states and infinitesimal matrix Q, the problem is reduced to the solution of this 

system of linear equations 

P.Q = 0 
N 
^ Pjj = 1 (2.5) 
i=l 

where P = ^2» —i^n) the stationary probability of being in the 

state. 

Since any one of the equations 2.5 is redundant, one of them should be replaced 

by the normalizing condition equation. This system of equations could be solved by 

the method of Gauss-Seidel,which is an efficient iterative method for solving a large 

system of linear equations with a high proportion of zero coefficients, and with the 

diagonal element of the coefficient matrix dominating. However, the Gauss-Seidel 

method is not guaranteed to converge when that diagonal dominance is "weak". 

Unfortunately, this is the case with the above set of equations. Nevertheless, the 

method can be made to lead to convergence after simple modification: The normal­

izing condition equation is eliminated from the system and Pn is assigned the value 

of "one" temporarily. The exact solution can then be obtained by a modification 

to satisfy the normalizing condition equation (method of Nekrasov [11]). 

Another exact method of solution is Gauss elimination with partial pivoting, 

in which a factorization algorithm is used to factor the matrix Q in the form A = 

LU. This method was implemented here using the software package UNPACK. 

A Fortran computer program was developed to create the transition matrix Q for 
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two, three, four and five stations, to solve for the stationary probability distribution, 

and to calculate certain system performance measures detailed below. Both of these 

numerical methods were implemented, and the results for the two methods were in 

agreement up to the 8^^ decimal point at least. 

2.4.2 Related Discrete Time Markov Chain Method 

In this section we will be looking at the state of the system at certain selected 

times, and turn our attention away from the original continuous-time process to an 

embedded discrete time Markov chain process. We are going to look at two discrete 

time chains determined by the infinitesimal matrix Q. 

1. The embedded chain: To illustrate the above, let us consider the original 

process only at transition times, that is we consider an embedded stochastic 

process which becomes a discrete time Markov chain. Let us define the matrix 

R as follows, 

for zVi and ^ 0 

0 for i = j and ^ 0 

1 for i = j and = 0 

It is clear that i? is a stochastic matrix, hence the powers of R generate a 

discrete time Markov chain which is called embedded Markov chain [33]. There 

are two problems involved with the embedded chain. First, the embedded 

chain is periodic for our problem so that, no steady state exists. Second, the 

embedded chain losses some properties possessed by the original one, such 

as transition rates, so that its limit distribution, even it does exist, does not 

Hi = 
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equal the continuous time limit distribution, and must be modified to take 

transition into account. 

2. Another discrete time chain determined by Q was first introduced by Yong 

[38]. Let the matrix P be defined as follows, 

jP = / + ^ where, 

oo > c> 

Hence, P is a positive stochastic matrix, and we may consider the discrete-time 

Markov chain corresponds to P. It has been proved [33]^ that the original con­

tinuous time chain and the generated one have the same limiting distribution. 

That is, 
oo 
E = 1-
i=o 

A computer program was written to compute the limiting distribution by taking the 

power of the matrix P. The stopping criterion used was the Cauchy criterion, 

namely, the calculations stops when < e. To speed up the 

process, the program computes P^, P'^, P®, P^® and so on. The program was used 

for different values of the station capacity and number of stations and the results 

were identical to those achieved by the numerical methods mentioned in the previous 

section. The convergence was achieved in most cases between p256 and pl024^ and, 

due to the vectorization process, which is very effective in matrix operations, the 

CPU time was not excessive. Although the above method seemed to work well, it 

is not to be recommend for solving for the limiting distribution, because serious 

round-off error can occur. One could also use the Gause-Seidel stepping method 

®The solution to % = %P => % = %(& + /)=>0 = %&=>0 = XQ. 
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on the discrete time Markov chain, in which the Markov chain recursive equation 

= TT^P is used to solve for the steady state probability vector TT 

2.4.3 Separation of Variables Method for the Back-Order Case 

In this section, a separation of variables method is used to solve the set of multi-

variable homogeneous difference equations with constant coefficients corresponding 

to the stationary probability equations. Hunt used a similar method to solve a 

sequential queueing problem. To apply this method, we will relax the assumption 

that the demand stops when the final station runs out of units. We will assume 

the demand will continue and a backorder policy will be utilized. Under this new 

assumption, the station capacity levels can be negative. To illustrate the method, 

a two-stage system with capacity = 2 , z = 1,2 is used. The stationary 

probabilities of the system satisfy: 

For 7X2 = 0, — 1,..., — cx) 

(A + 252)^2,712 = ^^2,712+1 + ^1^1,7^2 (26) 

For 7^2 = IjO, —1,..., —oo 

(A -}- -t- ^2)^1,712 " ^^l,n2+l + 2«iPo,7i2 + 2^2^2,712-1 

(A + 25i)Po,n2 = ^^0,7^2+1 +^2^1,^2-1 (2-7) 

And the boundary coditions are: 

-^^2,2 = ^1^1,2 

(A+^2)^2,1 = ^^^2,2 +4^1,1 

®The solution for the discrete time may converge after fewer iterations [16]. 
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(A + ^I)/'I2 = ^2-^2,1 + 2^1-^0,2 

(A4-2^I)PO,2 = ^2-^1,1 (2.8) 

Now apply the change of variable: M = 2 — zig to the above stationary equations, 

and obtain: 

For n = 2,3,..., oo 

(A + 282)P2,n = ^^2,Ti-l + ^1^1,n 

F o r  n  =  1 , 2 , 3 , o o  

(A + ^1 + ^2)-Pl,n = A ,71-1 + 2^IPO,TI + 2^2^2,n+l 

(A + 25i)Po,n = <^^0,71-1 +^2^1,71+1, 

for which the boundary conditions become 

^^2,0 

(A + f 2)^2,1 

(A + 6i)fi Q 

(A + 25I)PO,O 

Using the vector notation: 

Pn = 

4^1,0 

^^^2,0 + ^1^1,1 

^2^2,1 + 26IPO,0 

W,1 

^2,n 

•^1,71 

^0,71 

equations 2.9 and 2.10 can be put in the form, 

(2.9) 

(2.10) 

(2.11) 

A_iP„_i + AQpn + 'liPn+l = 0 (2.12) 
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Now, invoking the separation-of-variables assumption Pnj ,n = Cn\6^, one obtains, 

A_iC ^bA^C+ h^AiC = Q 

OT D C = 0, 

(2.13) 

(2.14) 

where D is a matrix of the same dimension as the A matrices, and is equal to 

(A + 18^B — \  —0 ^ 

—2^2^^ (A + + 62)6 — A —25J6 

—Sob^ (A + 25J )6 — A Y 

and C is given by 

C = 

C2 

CI 

^0 

As C > 0, the matrix D is singular, determinant 

— A^6^ + + <^2 "t" ^12)^^ ~ ^1^12 ^2^12)^^ 

+ ((i2<i2'^12 46^62^)^ — 25J52('^1 4" ^2) ~ ® 

equal to zero, where 

D-^ = A + 26^ 

^2 = A + 2^2 

</L2 = A + + ̂ 2 

(2.15) 

(2.16) 

The symbolic machine "MACSYMA" was used to solve for the roots of this equation, 

which yielded 
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\ \ J +  4 ( ^ 2  4 "  ̂ 2 ) ^  4 -  4 ( 6 ] ^  —  ̂ 2 ) ^  4 "  +  2 ( 6 1  - T -  ^ 2 ) * ^  

8^1 ̂ 2 

—X\J+ 4(6^ + 62)^ 4" 4(^2 ~ ̂ 2)^ 4" A^ 4- 2(61 4- 62)A 

861^2 
1 

(2.17) 

Note that all roots are positive, including 63 since, 

\/{^^ 4- 4(6% 4- 62)A 4- 4(6% -  62)^) = \/((^ + 2(6% 4- 62))^ + 4(6% -  62)^ -

4(61 + 62)2) 

= + 2(6% 4-62))^ — 46^62) < (A 4-2(6% 4-62)) 

Proceeding analogously to the development in [16], [24], and discarding the 

root 64 = 1 for reasons of convergence, the general solution for the stationary 

probabilities are given by the linear combinations of the power of the roots 

excepting 64: 

Pni,n = «[(cn%)%fti' + )2^2 ((^^11)3^3]' (2.18) 

Here, a is a normalizing factor. The number of the constants cn%'s are then reduced 

by substituting this solution in equations 2.9 and 2.10. The number of constants 

are reduced to three and the boundary constraints 2.11 are used to solve for the 

constants. An arbitrary boundary state probability is chosen to be equal to the 

normalizing factor o, and, finally, substitution of 2.18 into the normalizing equation 

Sn% En ^n%,n = 1 yields the value of a. 

Discussion Looking ahead to the next section, we look briefly at the 

two performance measures J% and I2 below, for which the backorder analysis allows 

h = 

63 = 

64 = 
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specialized conclusions. 

2 
4 = E niXni 

«2=0 

oo 
where Xni=^Pni,n 

n 

^2 = E 
n=0 

oo 2 
where Xn = ^  Pni,n 

«1=0 

Substituting for the values of the joint probabilities, and after some algebraic ma­

nipulation, we get 

but the expression for I2 does not turn out as simple as suggests the following 

considerations: 

• Since the roots of the detrimental equation are summed in an infinite geometric 

series to compute the joint probabilities, each should be less than one. To 

get condition for summability, we solve for Bg = 1 (orB2), and obtain 

• If the production rates are equal, i.e., 6^ = 82 the critical condition for stability 

will be A = = ^2* 

• In equation 2.19 the value "2" is the capacity of station #1. As is known in 

the analogous queueing, relation (2.19) also applied for an isolated station. 

^The problem of instability does not occur for a finite system. 

(2.19) 

Hence, 63 < 1 -> A < Furthermore, A < 

o A ^ ^"1 rri L. ^ 1 _i i lU-i r : - M ^ ^ ^ m M • # m m ̂  ̂ m ^ « m . « ̂  

* X 1 ' 6 

• The critical rate of demand is equal to and the system will be unstable 

i f  A >1^7  
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Thus, if back ordering is allowed at the final stage, the first stage will behave 

in autonomous fashion with regard to I-^. 

2.5 Performance Measures 

To evaluate a multi-stages production system well defined performance mea­

sures are needed. A survey of different production measures from the literature is 

presented here. 

Maximum utilization [7]. This is defined as the.fraction of time that the first 

station is free to service incoming units. 

Steady State Mean Output Rate [20]. This is expressed as 

E Pj 
jeB 

where B is the set of states corresponding to the last station being busy, and 

Sj^ is the mean service rate of this station. 

Production Capacity [7], or maximum arrival rate for which the system is stable. 

System Responsiveness . This is defined as the probability that the system 

can successfully meet an operational demand when operated under specified 

conditions. System responsiveness is a term used in a broad context to reflect 

the system performance, and may be expressed differently depending on the 

specific application. 

Because of the special nature of the pull system, and because it is a finite system, 

the above measures need to be redefined. Therefore the performance measures for 

the pull system will be defined as follows: 
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• System responsiveness, expressed as 

S E  =  h H P r o i n i K R i )  ( 2 . 2 0 )  

which measures the system response to the demand by comparing the de­

mand rate A (downstream) to the effective production rate of the first station 

(upstream) 

• Mean number of units at the last station, expressed as 

Rn Rn-1 RI 
= s "iV Z) " I] Pni,n2y..,nj^ (2.21) 

n^=0 n^_^=0 71^=0 

which measures the ability of the system to response to the demand. 

• Probability that the last station is out of stock, expressed as 

Rl RN-1 
Pout= (2.22) 

Hjy_j=0  

which measures the system success in being just-in-time 

2.6 Study of Pull System Behavior 

In this section we will study the effect of system parameters on the above 

system performance measures. See Figures 2.3 , 2.4. 

2.6.1 System Responsiveness 

2.6.1.1 Effect of Station Capacity In order to examine the effect of 

station capacity on the system responsiveness, several computer runs were made 
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SYSTEM BEHAVIOR 
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avg. units at st.#2 ^ 
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Figure 2.3: Effect of production rates 
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Prob of out at st.#2 + 

o  
o  

o  

>o  
(DO 
f: •_ 
(UCM 

•p 

o  

2 . 0 0  4.00 
station capacity 

6 . 0 0  8 . 0 0  1 0 . 0 0  

Figure 2.4: Effect of station capacity 
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for capacity equal to one, two, up to six. The results are shown in Figure 2.5. The 

curves in Figure 2.5 show the system responsiveness measured on the ordinate and 

the station capacity along the abscissa. The curves are almost parallel, differing 

in displacement as functions of the production rates. The curves shown in the 

figure appear to be approaching an equilibrium condition which is a function of the 

production rates, and which is approximately achieved at station capacities of two 

or three units. This phenomenon agrees with the JIT concepts that this system is 

modeling. 

2.6.1.2 Effect of Demand Rate Figure 2.6 shows the effect of increasing 

the demand rate on the system responsiveness . As expected, increasing demand 

rate decreases the system responsiveness (see equation 2.20). The relationship is 

not linear and it tends to level off. The reason is: as the demand rate increases (the 

denominator), the probability of having less than maximum capacity at station one 

increase (the numerator). That is, an increase in denominator is counterbalanced 

by an increase in numerator. 

2.6.2 Average Number of Units at Final Station 

2.6.2.1 Effect of station Capacity Figure 2.7 shows that increasing the 

station capacity causes the average units at the final station to increase linearly. 

This is an expected results because adding more capacity means keeping a high 

buffer. 

2.6.2.2 Effect of Production Rate The curves in Figure 2.8 show that 

increasing the production rates causes an increase in the average units at the final 
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Figure 2.5: System responsiveness vs station capacity 
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Figure 2.6: System responsiveness vs demand rate 
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station. At production rates of two times the demand rate or more, however, the 

increase of production rate has little effect on the average units at the final station. 

This phenomenon agrees with the concept of JIT which this system is modeling: 

"The subsequent station will not produce units if it is not needed by the succeeding 

station." 

2.6.3 Probability that the Final Station is Out of Units Pgutj^ 

2.6.3.1 Effect of station capacity As for the previous performance mea­

sures, Figure 2.9 presents a set of curves with PquI^ on the ordinate and the station 

capacity on the abscissa. It is immediately apparent that the probability that the 

final station is out of stock decreases (improves) as the production rates and the 

station capacities increase. This is to be expected because the higher production 

rate and/or the higher station capacity prevent the last station from "starving". 

At station capacity of three or more, and with production rate equal to or greater 

than the demand rate, the situation is entirely different. The station capacity has 

little effect on /ouijy the curves converge. 

2.7 Resource Allocation 

In the previous section, we have studied the system in the light of its perfor­

mance measures, without emphasis on resource allocation, assuming equal station 

capacity and equal production rates. In this section we will deal with resource 

allocation. 

The important question facing any production planner is how to allocate re­

sources for different stations. The answer is not simple, particularly in view of 
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uncertainty about production and demand times. In an attempt to answer this 

question, we analyze the system and study its behavior in two ways: 

1. The effect of allocating work elements and personnel, i.e., production rates, 

among stations. 

2. The effect of allocating (Kanban), i.e., station capacités, among the stations. 

This study has been done using the probability that the final station is out of 

stock,as the performance measure. The reason for this choice is our conviction that 

the most important concern for the JIT doctrine is the availability of the product 

when it is needed. 

Computer programs were written to perform preliminary tests for the above 

two types of analysis, and the following two optimization problems were formulated. 

2.7.1 Optimal allocation of station capacity (Kanban number) 

The problems of finding a station-capacity allocation minimizes Pout^ is ex­

pressible, for an arbitrary number N of stations, in the form. 

Mm Pout^ = Sni=0 

such that = <^1-

The constraint keeps storage cost fixed in a sense. 

The problem, in the given form, has been addressed under the further condi­

tions: 

= 6  i  =  1 , 2 , 3 ,  . . . , i V  

S j X  = Cg. 
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The first condition equates all production rates, to highlight and isolate the effect 

of the station capacities (Kanban allocation), while the second condition exploits 

the homogeneity of the model, in the parameters A and S. The minimization was 

done using enumeration for two , three and four stations. All the possible combina­

tions of station capacities were tested for each chosen value of Cj and C2, yielding 

the optimum value of Pcmt^i together with optimum allocation of capacities R^. 

It turns out that there is a value off/A above which the optimum allocation of 

exhibits a "funnel pattern", with the higher capacities allocated downstream, 

whereas the allocation is essentially uniform otherwise. 

To fine-tune the value of S / X  (i.e, C 2 )  at which the optimum allocation of 

changes from uniform to "funnel", we followed this simple process: 

1. Identify two values (the interval) of the ratio S / X  between which the change 

in character of optimum allocation occurs. 

2. Divide this interval by five to get four intermediate values, and again check 

the optimum allocation at each and identify a new and smaller interval, nested 

in the previous one. 

3. Repeat step 2. 

4. Stop when the interval reaches a small value, e, or less. 

For iV < 5, an approximate relation determining the value of the above critical 6 / X  

is: 

6 I X  =  c * N ' ^ *  # 
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where N = number of stages, R = —— , and o, 6, c are constants. A 

regression linear model was developed to calculate the constants, utilizing a large 

number of (Cj,C2,iV) combination with N < 4, and verified using several combi­

nations with N = 5. Tables 2.1, 2.2 and 2.3 provide numerical illustration of the 

optimization. The values of the constant were found to be 

a = -.849, b = -1.908, c = 28.576 

From the above results, it may be seen that "underdesigned" production sys­

tems (low S/X), with correspondingly high values of Pout2^ do not feature the 

f u n n e l  p a t t e r n ;  o n  t h e  o t h e r  h a n d , " o v e r d e s i g n e d "  p r o d u c t i o n  s y s t e m s  ( h i g h  S / X ) ,  

with correspondingly low values ofP^y^g» do feature it. 

It may also be noted that, in actual manufacturing contexts, storage expense 

often increases in the downstream direction, so that a weighted sum of the capacities 

/2^, with weights increasing in the downstream direction, might provide a more re­

alistic constraint. One can expect that such a modification would pull the optimum 

funnel pattern back toward uniformity. 

2.7.2 Optimal allocation of production capacity 

The problem of finding a production-rate allocation minimizing -Pout^y ex­

pressible, for an arbitrary number N of stations, in the form: 

M m  Poutj^ =  D n i = 0 = 0 ^ ^ 1 , 7 1 2 , - , 0  

such that ^iLl ~ ^3 

The problem, in the given form, has been addressed under the further conditions 
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Table 2.1: Optimum number of Kanban for two stages 

C2 Ri R2 Pout 2 h SE 
4 5.0 1 3 .0154 2.6382 .9846 
4 3.0 2 2 .0481 1.659 .8416 
4 1.0 2 2 .0026 3.9234 .5728 
6 3.0 2 4 .0026 3.9234 .8729 
6 2.0 2 4 .0143 3.3091 .8232 
6 1.5 3 3 .0343 2.3015 .7297 
6 1.0 3 3 .0916 1.9411 .6259 
8 2.0 3 5 .0008 4.4660 .7950 
8 1.6 3 5 .0027 4.2979 .7560 
8 1.0 4 4 .0238 2.9545 .6342 
8 0.7 4 4 .0757 2.4532 .5324 

Table 2.2: Optimum number of Kanban for three stages 

Cl C2 Ri R2 & 
7 10. 1 1 5 
7 2 2 2 3 
7 .66 2 3 2 
7 0.5 2 3 2 
9 10. 1 2 6 
9 2.0 2 3 4 
9 1.0 3 3 3 
9 0.5 3 3 3 

12 2.0 3 3 6 
12 1.0 3 4 5 
12 .66 4 4 4 
12 0.5 4 4 4 
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Table 2.3: Optimum number of Kanban for four stages 

Ci C2 Ri R2 Rb R4 Pouti h SE 
8 10. 1 1 2 4 .0000 3.38947 .9996 
8 2.0 2 2 2 2 .1081 1.4656 .7620 
8 1.0 2 2 2 2 .3365 0.9463 .5377 
8 0.5 2 2 2 2 .62677 0.4577 .2966 

= R z  =  1 , 2 , . . . ,  i V  

6/\ = C4, ot.X = C^/C^N. 

Remark: The constraint is compatible with the philosophy of JIT manufac­

turing. To control the cycle time of a station and consequently the production rates, 

JIT calls for adding or removing workers at the station, and when those worker are 

multi-function they may be moved from one station to another, changing the pro­

duction rate. Thus, having the sum of production rates constant suggests constant 

number of worker and constant labor cost. 

The decision variables here are the production rates, which are continuous 

variables, as opposed to the number of Kanban units which are discrete variables in 

the previous problem. The algorithm chosen for solving this optimization problem 

is the Hook and Jeeves pattern search method [21]. It is a search technique for 

solving unconstrained nonlinear minimization problems with multi-variables. The 

technique consists of searching the objective function locally and then moving in a 

direction favorable for reducing the objective function. Since the problem we have 

is a multi-variable nonlinear constrained problem, some modification is needed. 

®Each worker can operate more than one kind of process or multiple version of 
the same process [6]. 
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Table 2.4: "Optimum" production rates for two-stations system 

Hi Si 6/A Ri R2 S2 
1.04 4.0 2 2 0.3400 0.7000 
0.52 2.0 2 2 0.2025 0.3175 
0.26 1.0 2 2 0.1150 0.1450 
0.13 .50 2 2 0.0625 0.675 
.065 .25 2 2 0.0322 0.0328 
1.04 4.0 3 3 0.2875 0.7525 
0.52 2.0 3 3 0.1800 0.3400 
0.26 1.0 3 3 0.1075 0.1525 
0.13 0.5 3 3 0.0600 0.0700 
.065 .25 3 3 0.0320 0.0330 

Since Pout^ is a function of elimination method is used to 

eliminate one of the 6's, say between the objective function and the constraint 

= Cg. That is done by substituting Cg — 6^ for in the 

objective function. After the search is done and the optimum values for 5's are 

obtained, the value of is calculated as = Cg — 6%. The optimization 

results are presented in tables 2.4, 2.5, 2.6. As a general rule, for 6 / X  <  1, Poutji^ 

is minimized when the production rates are approximately equal, which is known 

in manufacturing as the case of a balanced line. However, with S/X > 1, the 

optimum Pout^ tends to be achieved by assigning higher production rates toward 

the downstream station, (the "funnel effect" already met in sub-section 4.1) 

Tables 2.5 and 2.6 show a variety of distributions of 6's over the various stations 

that minimize Poutj^- Those distributions also depend on the value of C4, as 

defined above. 
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Table 2.5: "Optimum" production rates for three-station system 

ZiSi 6 / X  S2 S3 Pouti h SE 
1.56 4.0 0.230 0.386 0.944 .0006 2.8582 .7699 
0.78 2.0 0.158 0.236 0.386 .0087 1.9841 .6940 
0.39 1.0 0.100 0.138 0.153 .0946 1.9841 .5660 
.195 0.5 0.057 0.074 0.064 .3900 0.9858 .3608 
.098 .25 0.030 0.038 0.030 .6246 0.4964 .3542 

Table 2.6: "Optimum" production rates for four-station system 

T.iSi 6/A 62 S3 S, Pyuti h SE 
3.12 6.0 0.320 0.470 0.668 1.660 .0042 1.915 .8461 
2.08 4.0 0.265 0.373 0.483 0.960 .0132 1.846 .8194 
1.04 2.0 0.178 0.235 0.265 0.363 .0851 1.554 .7268 
0.52 1.0 0.105 0.135 0.140 0.140 .3279 0.966 .5166 
0.26 0.5 0.057 0.071 0.071 0.061 .6225 0.463 .2890 
0.13 .25 0.029 0.036 0.036 0.029 .8074 0.214 .1474 
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3 MODELING THE MULTI STAGE PULL PRODUCTION 

SYSTEM II 

3.1 One-At-A-Time Pull Production Systems 

In the last chapter , the multi-stage several-at-a-time pull production systems is 

modeled and analyzed. The assumption was that each station has "ample" servers 

(machines, indexed tools, operators, etc.) to handle units simultaneously. In this 

section we will model the one-at-a-time system and compare it with the several-

at-a-time system. Because of the relative simplicity of the steady state probability 

equations of this system, a special mathematical method is presented to solve the 

set of equations. By inspecting Figure 3.1, it is noticed that the transition between 

states moving horizontally is similar. This means that moving from state (raj, n2) to 

state {n\^n2 — l)is the same as moving from (m%,M2 — 1) to (raj,rag — 2). That sug­

gests the idea that a recursive approach is appropriate. The steady state equations 

for the system are: 

For 712 ~ 1,2,..., Ag ~ 1 

(A + = hPRi-\,n2 + 

For nj = 1,2,..., iEj — 1 

(3.1) 
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and 712 = 1, 2 , . . . ,  i?2 — 1 

(A + + ̂ 2)^ni,n2 = ^l^ni-l,n2 + ̂ 2^ni+l,n2-l + '^^rai,n2+l (3-2) 

F o r  n 2  =  1 , 2 , . . . ,  R 2  —  1  

(A + ̂ 1)^0,712 = ^2^1,712-1 + -^^0,712+1 (3-3) 

The boundary equations are: 

(^1+^2)^711,0 = hPni-l,Q +,"1 = l,2,...,i2i -  1 

^1^0,0 = (3-4) 

And 

^PRi,R2 = hPRi-l,R2 

i^ + h)Pni,R2 " ^1^711-1,^2 + ^2^711+1,^2 = l,2,...,Ai - 1 

(A + ^i)Po,i22 = ^2^1,^2-1 (3.5) 

The above steady state probability equations can be put matrix form using the 

notation: 
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-(R, ' Il 2 
A 

(R.-l.'Rg) 

•^(Rj.nj+l) 

^ > (R.-l,n_+l) 
k 

& 

Sf 

^ ^(n^,1*2+1) 

5, 

(nj-l»Ro) 
• 4 

•(n.- l»n„+l)  

I 

t. 

y 
y 

y 

(0*V 5* (O.Rg-l)-"^ 2. fx 
(O.n^l) 

Figure 3.1: Transition diagram for two stations, one at-a-time 
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r-(Rj,0) 

(n,+l,0) ^(n,+l,n»-l) > ' — — — 

^ (n^-liHg-l)  

"7^(0,Og-l) >• — — 
t 

->•(0» 0) 
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^R\,i 

4),2 
so equations 3.1, 3.2, 3.3 will be, 

= MPi + iVP^_i 

Pi+l = MPi + NPi_i 

where, 

^  0  0  . . .  

M 

0 0 

0 

0 

and 

0 • • ' 0 ^+^j!+^2 

0 0 . . .  Q 

/ _ \ 
0 0 . . .  Q 

^ 0 . . .  Q 

N = 0 ^ ...  Q 

^ 0 

o
 

•
 

are in the form: 

Pi = APq 

PR2 = 
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where, 
/ So -S 

A = 

^ T » » 
0 ^ 0 

0 

0 

and 

/ 

Z = 

0 0 

0 0 

A -^1 0 0 

0 A + —^2 0 

0 z|l 

I  . . .  0  ^  

0 

0 

\ I 0 0 

62 0 

y  0  0  0  . . . O A  +  ^ j ^ y  y  

3.1.1 Superposition Method 

To solve the above set of the state probability equations. 

Pi+l = MPi + NPi_i 

with the two boundary conditions, 

i = 1, 2 , . . . , j V  -

Pi = APq 

PR2 = 

and the normalizing equation, 

EZPz;  = 1'  
*  j  
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Pi = 

where 

mi 

m 

, we will employ the linearity and recursive structure of the system. The following 

steps illustrate the algorithm used: 

• Step 1; Put Pq in the form 

fo 

POO 0 0 0 

0 PIO : 0 

0 +  0 +  •• • - { - PjO +  • *  •  +  : 

: 
; : 0 

0 0 0 PHl,0 

• Step 2: For pjQ = 1 and pj^Q = 0 for A; ^ j = 0,1, • • •, /Ej, solve recursively 

the equations 3.9 with the first boundary equation 3.11. Since the system 

is linear, superposition can be applied and the actual solution is a linear 

combination of these + 1 solutions, in the form: 

Pi = (A)o * POO + (A)l * PlO + • • • + * ̂ ^1,0' (3-13) 

with the weights PQQi' • ' as yet undetermined, but determinable (in 

step 3) ) , and with {Pi)j , j = 0,!,•••, Ri equal to the value of obtained 

above with pjQ — 1 

The linearity required by superposition can be demonstrated as follows: 
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From equations 3.9 and 3.11, Pj^ can be put in the form 

A* = Q^O-

So, 

{Pi)j=C!ieji ; = 0,1,..., ̂ 1, 

and, substituting in 3.13, 

Pi = ^iPm^O + ̂ iPlOn + '-' + ̂ iPRi,O^Ri 

= Q(P00e0+PlOei + •••+ Pi2l ,0®i2i)  

= 

• Step 3: To find the actual value of Pq, substitute equation 3.13 in the second 

boundary equation 3.11 and the normalizing equation and solve for PQ 

The above method allows us to solve for the state probabilities, by solving a reduced 

system of +1, rather than (ilj + l)(il2 + 1) equation, which may constitute a 

remarkable reduction of computer time and /or memory. To illustrate the above 

method, an example of a two-stage system with station capacity of 2 at each, is 

presented below. 

Example The steady state equations for the two-stage system with 

station capacity of 2 are; 

{X + S2)P2,n2 = ^lPl,n2 + ^P2,n2+1 

-h^2)Pl,n2 = ^lP0,n2+ ^2P2,n2-l+'^Pl,n2+l 

^Eliminate one row of the set of the boundary equations. 
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(^ + ^l)P0,n2 = ^2Pl,n2-l + ^PO,712+1 

712 = 1'2 (3.14) 

with the boundary conditions, 

^1P0,0 = -^PO.l 

(^1 + ^2)P1,0 = '^Pl,! + 4P0,0 

hP2,0 = ^P2,l + hPl,0 

^P2,R2 = ^1^1,^2 

(A + 5I)pi JJ2 ^1^0,^2 + ^2^2,^2-1 

(A + ^l)P0,i22 = ^2^1,^2-1 

(3.15) 

(3.16) 

In keeping with the algorithm, set P20 ~ 1 and pjg = POO ~ 0. Substitute in 

equation 3.15 and solve for the state probability vector Pi, and repeat the same for 

PlQ = 1 and P20 — POO — 0, and for pqq = 1 and P20 ~ PlO ~ obtain the 

three corresponding solutions for Pj, 

0 

(^1)2 = 0 ' (A)l  = ^1 +^2 
A 

and (Pi)o = -6 

0 0 1 
To get P2> substitute for Pq and P^ in equation 3.14, and the three corresponding 

solutions are; 

(P22)i 

(-^2)7 = (Pl2)j 

(P02)j 

and j = 0,1,2 
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where, 

2 2 
(P22)i = E "^2/(P/,l),- + Z "2/ 

2=0 ^ f=0 
2 2 

(pi2)j = E "^iz(pz,i),- + E "1/ 
i=0 l=Q 

2 2 
(P02)i = E + E "0/ (3-17) 

i=0 ^ 1=0 

and n^j , mij is the entry of the matrices N and M respectively. To get the 

actual value of pjQ , j = 0,1,2, substitute the above values in equation 3.16, which 

yields 
2 2 2 
E iPk2)j PjO = E E iPll)j PjO (3-18) 

;=0 1=0 j=0 

for k=0,l,2. 

With one of the above equation replaced by the normalizing condition 

2 2 
_E È Pij = 1' 
i=0j=0 

solve for pjQ, j = 0,1,2, and substitute back in equations 3.14 and 3.15 to get the 

whole set of the state probabilities. 

3.1.2 Results and Comparison with Several-At-A-Time (ample) Server 

Systems 

To illustrate the effect of single server on the system performance, several 

computer runs were made using several different values of station capacities and 

production rates, and the results are reported in Table 3.1. As expected, the prob­

ability that the final stage is out of stock is higher in the case of one server. The 
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Table 3.1: Comparison of one-at-a-time with several-at-a-time for two stages 

Parameters One-At-A-time Several-At-a-' Time 
Ri R2 Si S2 h I2 •foutj h h Poutj 
2 2 .35 .35 1.5817 1.5240 .1070 1.6504 1.6196 .0587 
4 6 .35 .35 3.4307 5.3932 .0020 3.6286 5.6272 .0000 
6 4 .35 .35 5.4312 3.4432 .0121 5.6288 3.6288 .0006 
2 2 .20 .50 1.1682 1.4975 .1249 1.3849 1.6657 .0537 
4 6 .20 .50 2.5587 5.3581 .0075 3.3500 5.7363 .0000 
6 4 .20 .50 4.3750 3.5750 .0098 5.3501 3.7400 .0002 
2 2 .50 .20 1.7621 1.2660 .2084 1.7715 1.4093 .1210 
4 6 .50 .20 3.6672 4.4965 .0280 3.7400 5.3465 .0001 
6 4 .50 .20 5.6882 2.7991 .0707 5.7410 3.3525 .0038 

average units per station are higher in the several-at-a-time case, the reason for 

which being that, in the several-at-a-time situation, the effective production rate is 

of course higher and the orders from subsequent stations are more quickly filled. On 

the other hand, the system responsiveness is higher for the one-at-a-time system, 

the reason for this being that our definition of SE has the term(fnj < Ri) 

in the numerator and, as the out-of-stock probabilities will be higher for the sin­

gle server system, and the number-in-stock distribution will be shifted to the left, 

causing SE to increase. 

3.2 Lot Size Greater Than One 

Under the JIT concept a part should continue to be processed or assembled 

at different stations without being held at any of them. In other words, the ideal 

work-in-process should not exceed one and so does the lot size. In the previous 

analysis we have held to the lot-size-of-one condition, and have relaxed the work-
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Parameters One-At-A-time Several-Al a-Time 
Rx ^2 «3 82 ^3 /. h h /. h /a f oui 3 
2 2 2 .3 .3 .3 1.5112 1.4274 1.3930 .1562 1.5905 1.5464 1.5286 .0865 
2 4 7 .3 .3 .3 1.3926 2.8834 5.9844 .0058 1.5517 3.3970 6.5317 .0000 
7 4 2 .3 .3 .3 6.3941 3.4186 1.4784 .1241 6.5808 3.5808 1.5806 .0650 
4 3 1 .2 .3 .5 3.1221 2.5165 0.7871 .2129 3.6905 2.6905 0.6904 .3096 
2 4 7 .2 .3 .5 1.0333 2.2073 5.9726 .0143 1.3501 3.2586 6.7015 .0001 
4 3 1 .5 .3 .2 3.8255 2.6944 0.6051 .3949 3.8424 2.7374 0.6060 .3940 
2 4 7 .5 .3 .2 1.69U1 3.2346 5.3052 .0204 1.7400 3.5022 6.3344 .0000 

Table 3.2: Compare one-at-a-time with several-at-a-time for three stages 
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in-process condition. Now, we will relax the lot size condition as well, and model 

the system with lot size greater than one. The two-stage pull production system 

will be modeled under the following assumptions, which agrees to some extent with 

Morse [26]: 

1. The station capacity is a multiple of the lot size. 

That is Q{ (i = 1,2,..., iV) , is constant 

2. Station i will send an order to withdraw from station i — 1 if its capacity drops 

from mj Qi -f- 1 to Qi, > mj > 0. So if the number of units is in the 

range from to — \ )Qi +1, there are orders outstanding 

(each order is for lot size of Q units). 

3. The lot size of a station is equal to, or is a multiple of, the lot size of its 

subsequent station. 

Summarizing the above, 

,  ^2^1,  i  = l ,2, . . . , iV 

Qi=^iQi+l > ^  * = 1,2, . . . , jV 

The state-transition rate diagram (for Qi = 2Q2) is shown in figure 3.2, which 

shows every possible state and all the possible transitions from one state to another. 

The steady state equilibrium equations for this model are as follows: 

For nj = 0, Q252Q2» • • •'-̂ 1 

1^1* I I +<2-'n«(l I.I ^ 1)^^1,0 = 

^^1,1 
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(Rl.Rz) ^  ^(R^.Rg-D— -^(R,lR2-Q2)-—— 

fo" 

\ 

- (&Rl-Q2,R3-Q2b^(] ^(Rj-Q2.R2-lt^ 

IA. t, 

(S 

Nr1-2QI.'Ç-^^-^(Ri-":1.R2-1)-^ ^^(R^2QJ,U2-Q2)-^(RI 

(O.Ro) 

Figure 3.2: Transition diagram for lot size larger than 1 
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~ Q o )  ^  ̂ ^ ( R . - Q g . R g - Q g - r l ) ^ - — " ' A R I - Q 2 » ^ ^ "  

-Q,)f ^(R j-Q jt^^-^-l)-' *- —-^(R^-Q^'Rg-ZQp)-*^ ---^^(Rl-Ql» 0) 

-QgM '(RI-Q2~Q 1 '^2"*^2~^^"*' ~ Y^R 1"Q2"^ 1 »R2"2Q2^'^ ~ l"^2~^ 1 ' 

Lo 
M 

-Qg) (R^-2Q^,R2~Q2~J)^ »—'^>'(Rj-2QJ,R2 -2Q2)^—--^^(Rj -ZQJ »  0) 

A J. 

a ^ —:^(0»R2-Q2-^)"^ — ~ —>»(u,R2 ~2Q2) 
a (0,0) 



www.manaraa.com



www.manaraa.com

58 

+ I 1^-61,0 ("«) 

For 71]^ = 0, Q2j2Q2'• • • ' ?%2 = 1,2,..., JR2 

[-^ + ^1- I I +^2-"^^"(l I' I ^ I)]^ni,n2 = 0 

^^ni,n2+l 

+ «2-41 1,1 l)f.,+%..,_Qg(3.20) 

where, | j| is the largest integer less than or equal to 

Using numerical methods as before, we solve the equilibrium equations and 

calculate the joint stationary probabilities and system performance measures, as 

defined above. 

3.3 The Effect of Using Lot Size Greater Than One 

To study the effect of large lot sizes, a number of computer runs were made for 

various values of lot sizes and station capacities. A comparison is made between 

this model and our standard model with Q = 1. Tableas 3.3, 3.4 show the system 

performance for various station capacities and lot sizes (including Q = 1). It is 

noticed that: 

• The probability of stockout is smallest for lot size of 1 ,and generally is smaller 

for smaller lot size. 

• The number of average units per station is greatest for lot size of 1, and 

generally is greater for smaller lot sizes. 
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Table 3.3: The system performance for various lot sizes, R\ = \2 ila = 6 

Perf. lot size Si = .5 62 = .5 — .2 S2 — .5 
•Pout J Qi = 1 , Q2 = 1 .5468E-04 .3308E-06 

Qi = 4 , Qa = 2 .1116E-02 .2517E-04 
Qi = 6 , (^2 = 3 .6579E-02 .3811E-03 
Qi = 6 , Qa = 2 .1116E-02 .2549E-04 
Qi = 6 , Q2 = 6 .1116E-02 .2516E-04 

p
 

II C
O

 

to
 II
 

C
O

 

.6579E-02 .3806E-03 
Qi = 2 , Q2 = 2 .9774E-01 .4153E-01 

h Qi = 1 , Q2 = 1 5.3500 5.7400 
Qi = 4 , Q2 = 2 4.8513 5.2400 
Qi = 6 , Q2 = 3 4.3609 4.7405 
Qi = 6 , Q2 = 2 4.8513 5.2400 
Qi = 6 , Q2 = 6 4.8513 5.2400 
Qi = 3 , Q2 = 3 4.3609 4.7405 
Qi = 2 , Q2 = 2 3.1579 3.3546 

SE Ql = 1 5 <?2 = 1 0.8806 0.7353 
Qi = 4 , Q2 = 2 2.1548 0.9801 
Qi = 6 , Q2 = 3 2.0840 0.9247 
Qi = 6 , Q2 = 2 2.7183 1.1648 
Qi = 6 , Qa = 6 0.4802 0.4529 
Qi = 3 , Q2 = 3 0.3266 0.3212 
Qi = 2 , Q2 = 2 0.1504 0.1595 

• The system responsiveness is greater for larger Q\/Q2 • 

However, there is a missing cost item here, which is the cost of moving items 

in bulk vs. one-at-a-time. As a partial answer, we should mention that, in the JIT 

factory, the stations are arranged closer to each other because there is no need for 

a WIP area and the transportation cost might not be a factor. To get more insight 

into the above considerations we are going to analyze the effect of lot size in the 

light of a traditional cost function. We will use profit/mean production time as our 
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Table 3.4: The system performance for various lot sizes, Ri = 6 R2 = 

Perf. lot size II 11 Ô1
 

S\ •— .2 ^2 *5 
Pout'i Qi = 1 1 Q2 = 1 .1325E-09 .5932E-13 

01 = 6 , 02 = 3 .2920E-04 .3295E-05 
= 6 , (?2 = 2 .1371E-04 .3067E.05 

Qi = 6 , Q2 = 6 .4064E-03 .7558E-05 
Qi = 3 , Q2 = 3 .1634E-05 .4322E-08 
Qi = 2 , Q2 = 2 .4755E-07 .5223E-10 

h Ql = 1 > <?2 = 1 11.3500 11.7400 
Qi = 6 , Q2 = 3 10.3130 10.7500 
Qi = 6 , Q2 = 2 10.7760 11.1750 
Qi = 6 , Q2 = 6 8.8470 9.2354 
Qï = 3 , Q2 = 3 10.3490 10.7400 
Qi = 2 , Q2 = 2 10.8500 11.2400 

SE Qi = 1 , Q2 = 1 0.8806 0.7353 
Qi = 6 , Q2 = 3 2.0784 0.9212 
Qi = 6 , (^2 = 2 2.7016 1.1562 
Qi = 6 , (^2 = 6 0.1666 0.1667 
Qi = 3 , Q2 = 3 0.3286 0.3214 
Qi = 2 , Q2 = 2 0.4807 0.4530 
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index of performance [26]. 

profit/mean prod, time = (gross profit — inv. cost — order cost)/mean prod, time 

= G.D — 

where 

G Gross profit/unit 

Ci Inventory cost/unit/mean production time 

Co Order cost/order 

D Mean number of units demanded in mean production time 

I Mean number of units 

Mean number of orders per mean production time 
For Q = 1, 

D = Nji and prof Hi Di{G — Co) — C{.Ii 

For Q > 1, 

D = Nji Q and profit2 = D2{G — CojQ) — C{.l2 

where, 

^2 = ~ (Poutj^)2^ 

Assuming the cost coefficients G, C^, and Co , as well as the production rates 

and demand rate, do not depend on lot size, we can deduce from the numerical 

results that: 

• Di is greater than Dg because {Pout^)^ less than {Pouijtf)2' Tables 

3.3 and 3.4. 
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• The mean number of units "J2" is smaller in the Q > 1 case, so that the 

inventory cost is smaller. 

From the above, we conclude that the values of the cost coefficients G, Cj and 

and their ratios are the determining factors in choosing the lot size. 
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4 CONTRASTING PULL AND PUSH 

Many authors write about the pull systems and its superiority over the tradi­

tional push systems without dealing with the subject quantitatively. The exception 

for that is Terada and Kimura [36], who analyzed the pull systems and compare 

it to the push systems. The comparison object was the amplification of inven­

tory/production fluctuation in the further precedent stations. 

In this chapter , we will model the push system and compare the performance 

of both systems, using the performance measures explained before in Chapter 2. 

4.1 Modeling the Push Systems 

The push system , which is known as the traditional production systems, has 

been modeled in the literatures under different assumptions, see [1], [2], [22], [8]. In 

this research we will assume the demand rate is accurately forecast and units will 

be pushed by this rate A to the upper stream station. For the comparative study, 

this rate is assumed to be the same actual demand rate used by the pull systems 

to pull units from the downstream station. 

The push systems work as follows under the assumption of exponential distri­

bution of the process and interarrivai times; 

A Part is pushed by rate A into the first station whose capacity is R\ (there 
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is room for units and there is Ri "servers"). The flow of arrival stops [8] if 

the capacity reached Ri. The part is processed with rate 6^ and leaves to station 

2 if its capacity is less than R2, otherwise it will block its server at station 1 and 

process continues the same way till final station. At the final station N, a part is 

processed with rate and is able to leave immediately to be shipped (no blocking 

is occurred at the final station). 

4.1.1 The Model 

As a simplified example, we will model a two-station system. The system is rep­

resented by a finite continuous Markov process with state space S = {(wj,712,^3) : 

0 < ni < Ri < 00,0 < n2 < R2 < 00,0 < n.3 < Where nj, i = 1,2 is the 

number of units at station i and R^ is the maximum capacity of station i in units 

and Mg is the number of blocked servers in station 1. 

Figure 4.1 shows the transition diagram of the system and the stationary prob­

ability equations are as follows: 

For nj = 0,1,... ,i2j — 1 

712 = 0,1,..., ̂ 2 ~ ^ 

"3 = 0 

[A 4- * ni + ^2 * "2] ,712,0 = 

^1 *("1 +1)^711+1,712-1,0 

+ ^2* ("2+ 1)^711,712+1,0 

+ "^^1—1,712,0 (4-1) 
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(0,0,0)̂ i<0,l/0)<- — -•.(0,n2-l,0)i^(0,rig,0)^(0,n2+l»0><r— ^(0,R2,0>«-(1,P 

I 
(1,0, OH—(1,1,OK- — m*(l,n2-l,0)m:<.(l,ii^,0)^(l,n2+l,0X — 

I "^1 I I jr 

I I  '  I  I  '  

i y  \ /  i y  | y  \ /  i  
(n^-l,0,0Mni-lA,0) - (n^^-l,n2-l,0)<(iy^-l,n2,0)^(n^^-l,n2+l,0) ..(n^^-^,0k(ni,R2' 

y (ni-M)Sj ' / 
(r^,0,0><-(n3^,l',0)rf.- - (nj^,r^-l,0H^(n3^,n2,0)-^(n3^,r^+l,0) — (n^,R2,0X(n]+l, 

(nj+l,O,0)<.(n3+l,l,O)-.-(nj+l,n2-l,OK(ni+l,i^/OK(nj+lrn2+l,0)---(n3+l,R2,0)<(nj4 

'  y \  x i  / i  y  J  / \  /  

% 

I ' \  
II II I 
,1 ' ! 

I 1 I Y 
-l,0,0)^ÇRl^-l,l,0) -. (Rj^-l,n2-if^)<-(Ri-lrn2/0)<-(Rj^-l,n2+l,0)---(Rj^-l,^,0K(I^, 

|yb /ixiyk 
(Rj,0,0K-<R^,l,0)^ - .<(R^,n2-l,0>MRg^,n2,0K-(Rg^,n^+l,0)<. ... 

Figure 4.1: Transition diagram for two-station (usual model) push system 
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For raj = 0,1,..., R\ — 1 

«2 = ^2 

ti3 = 0 

[A + 6i*ni+ ̂ 2* ^2! ̂ n,%,E2,0 

6% * (tii + 

+ ̂ 2 * ̂ 2^Ti%4-l,^2)^ 

+ ^^ni[-l,i22»0 

For nj = Ri 

712 = 0,1,... ,^2 

713 = 0 

[^2 * Rl + ̂ 2* ̂ 2! 

&2 * (^2 ,712+1)0 

+ —1,712)0 

For «2 — 1,2,..., jRj — 1 

712 = R2 

713 1,2,..., "* 1 

[A + * (ni - 713) + ̂ 2 * ̂ 2! Pni,R2,n^ = 

Si * (mi - «3 + 1)^2,^2,^3" 

+ ^2 *'^2^7ii+l,i?2,n3+l 

+ 1/^2,713 
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For m = Ri 

712 = ^2 

"3 = 

[^1 * ("1 - "3) + ̂ 2 * ^2] PRi,R2,n^ = 

^1 * (^1 - "3 + '^)PRi,R2,n^-l 

^^Rl-l,R2,n^ (4-^) 

and the boundary conditions are: 

•P-1,712,713 ^ ° 

^711,-1,713 = 0 

^^1+1,712,^3 ~ ® 

^ni,i?2+l>"3 ~ ^ 

i^7ii ,712,713 = 0 if 71% < 713 or {n2 < R2 and 713 > 0) 
The above equations can be solved simultaneously using one of the methods 

describes in Chapter 2 and the joint stationary probability distribution could be 

obtained. Consequently, the system performance measures as identified in Chapter 

2 can be calculated. 

4.2 Comparing Push and Pull Systems 

The recent literature appears to favor "pull" over the more traditional "push", 

primarily on general and managerial, rather than quantitative, grounds ([28], [35], 

[25]), One exception to this is Terada and Kimura [36], who analyzed pull and push 

on the basis of the magnitude of inventory/production fluctuation in the furthest 
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downstream station. In this section, we pursue that sort of quantitative compari­

son but with the first two performance measures indicated in Section 2.5. The 

comparisons are of course made fair by using the same station capacities, produc­

tion rates and demand rate for both systems (see Section 4.1), although, as pointed 

out at the end of the present subsection, the added push assumption of perfect 

predictability of A could be considered as a bias favoring push. 

The results are given in both tabular (Table 4.1) and graphical (Figures 4.2 

- 4.8) form. Specifically, Table 4.1 exhibits the differential effect, on a pull and 

a push system, of possible allocations of a fixed total of station capacities to the 

two stations of the system. Figures 4.2 - 4.5 exhibit the effect of changing station 

capacity on the performance index I2 for a pull and a push system. Figures 4.6 

- 4.8 exhibit the effect of changing production rate on performance index I2 for a 

pull and a push system. In the case of Figures 4.2 - 4.8, both the station capacities 

and the production rates are kept equal among the two stations. It may be noted 

that, while results for the performance index are not presented graphically, 

these exhibit precisely the same quantitative behavior as given in Figures 4.2 - 4.8 

for the performance Index 

General conclusions to be drawn from these tables and figures are as follows: 

1. Pull systems tend to outperform push systems. Pull systems show lower values 

of stockout probability Pout2 higher values of average number of units 

I2 at the final station. 

2. However, with low production rates S (lower than demand (for pull) or supply 

^For the special case in which the equations of sections 2.3.1 and 4.1 apply. 
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compare push to pull 
pull 
push 

\ =. 13 , <5^=. 35 
o 

o 

o 
1.00 2.00 3.01 

station capacity 
4.00 5.00 

Figure 4.2: Effect of changing station capacity on a pull and a push system (a) 
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compare push to pu 
pull / 
push / 

X. =.35, (5'=.35 / 

o 

1 . 0 0  2 . 0 0  
station capacity 

3.00 4.00 5.00 

Figure 4.3: Effect of changing station capacity on a pull and a push system (b) 
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compare push to pull 
pull 
push 

X = .21, (5"=.07 
o 
CM 

m" 

o 

§§ 
•o~ 

1.00 2 . 0 0  3.00 4.00 5.00 
Station capacity 

Figure 4.4; Effect of changing station capacity on a pull and a push system (c) 
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compare push to pul 
pull y 
push / 

X = .13, (f=.07 / 
ro~ 

o 

CN~ 

ZO 
Doo 

•o~ 

o 

1.00 2.00 
Station capacity 

3.00 4.00 5.00 

Figure 4.5: Effect of changing station capacity on a pull and a push system (d) 
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o 
o 
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compare push to pull 
pull o 
push A 

—R2—6 

X^ = . 13 

o 
o 

VO" 

OJO 
*0 • « 

• 

cn 

E-< 
E" 
i§ 

< 

• <N • 

O 
O 

0.40 
T T 
0.80 1.20 

production rate 
1 . 6 0  2 . 0 0  

( 10-^ ) 

Figure 4.6: Effect of changing production rate on a pull and a push system (a) 
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0.80 1.20 
production rate 

Figure 4.7: Effect of changing production rate on a pull and a push system (b) 
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compare push to pull 

Rl=R2=l 
oin 

0.80 1.20 
production rate 

2 . 0 0  
( 10"^ ) 

Figure 4.8: Effect of changing production rate on a pull and a push system (c) 
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Table 4.1: Performance of pull vs. that of push 

Station capacity Pull Push 
Ri R2 Poutz I2 Pouti I2 
1 3 0.5122 0.7073 0.5768 0.4993 
3 1 0.5007 0.4993 0.5122 0.4878 
2 6 0.1116 3.1046 0.4268 0.8000 
6 2 0.2000 1.2000 0.3202 0.8884 
4 6 0.0036 4.8842 0.3703 0.9843 
6 4 0.0157 3.0135 0.3598 0.9964 

(for push)rate A), that is, in the case of "under powered" systems, and for 

small station capacities R, push systems can outperform pull systems. 

3. For push systems, increasing station capacities i2, in the presence of approxi­

mately equal 8 and A, does not increase the average number of units I2 as it 

does in the case of pull systems. 

These general conclusions are made plausible by leaning on the ordinary interpre­

tations that one places on the terms inflow, capacity and outflow. In the case of 

pull systems, the rate of inflow is the effective production rate of the first station 

upstream, proportional to the difference between that station's capacity and the 

number of units currently in storage (see the equations of Subsection 2.3.1) , while 

the rate of outflow is the fixed demand rate. In push systems, the rate of inflow is 

the fixed rate of supply, while the outflow rate is the effective production rate of the 

last station downstream, proportional to the number of units currently in storage. 

Now, with regard to the second above conclusion, i.e., that push outperforms 

pull when production rates S are lower than the demand/supply rate A, that is 
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simply a matter, under push, of material inflow more rapid than material outflow, 

resulting in high average number of units at the final downstream station and lower 

probability of stockout. On the other hand, under pull, the correspondence, respec­

tively, of S and X with inflow and outflow is reversed. This phenomenon is affected 

by station capacities R, since the effective production rate (inflow in pull or outflow 

in push) is a function of these capacities. 

With regard to the third above conclusion, we can similarly explain why fg 

does not increase under push with increasing the station capacity. The reason is 

that increasing station capacity will at the same time increase the effective rate of 

outflow, with the ensuing balance keeping the level of material essentially constant. 

A final comment on the above comparative study, already anticipated at the 

beginning of the present subsection, is this: While push has been identified as 

superior to pull in certain parametric situations, all comparisons has been based on 

the assumption of perfect prediction of the demand rate A under push, which favors 

push, and thus makes the case for pull stronger than this study might suggest. 

4.3 Â New Simplified Method for Modeling Push Systems 

As has been pointed out in Subsection 4.1, the usual model involves certain 

"blocking" states which add restrictions to the model equations, and complexity to 

their solution. 

We have developed an alternative method of modeling queueing systems with 

possible blockage, that has reduced the number of states, and in general simplified 

the process of keeping track of blocking as it occurs. The proposed modeling can 

be described as follows: 
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• There are N stations, each station having limited capacity at station z, 

and being equipped with servers. 

• A part arrives from supplier (time between arrivals is exponentially distributed) 

at a rate A and the supply will stop if the capacity R^ of the first station is 

reached. 

• The part is processed (processing times are exponentially distributed) with 

rate 6% at the first station, if and only if, it (the part) can proceed immediately, 

after processing, to the second station. That is, the first station will look ahead 

to the second station and process only parts that can proceed to the second 

station without blocking the first station. 

• The process continues in the analogous way up to the final station. At the final 

station N, a part is processed with rate and is able to leave immediately 

to shipping. 

Analogously to our exposition of the previos model. Figure 4.9 shows the proposed 

model transaction diagram for a two-station system. The new model, also modeled 

by finite state-space over continuous time Markov process, with state space S = 

{(nj^,ra2) : 0 < < oo, 0 < 712 < i22 < This model involves 

(1 + •Ri)(l + ^2) states, and is therefore correspondingly simpler to analyze. 

The stationary probabilities of these fewerstates now satisfy: 

For n2 = 0,..., R2 and n-^ = R^ 

[^2 * "2 + ̂ 1 * min{R2 - n2,i2i)] PRj^,n2 = 
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(0,0)^ ( 0 , 1 ) .  

( l . l ) - «  

(0,n2-l).<-

(l»n2-,l)«fr-

(n^rl*0)^& 1)^ 

(n l»0) -r f  

( n i + l , 0 )i< ("1+1,1)^ 

•< (nj-*l»n2-l) 

(ni»n2~l)'<^*^ in 

— — — »< • (ni+l»n2~l)^ (n2+ 

(Rl.0)-<- (Rj,l)-«^ (R,«n.-l) ^ 

Figure 4.9: Transition diagram for two-station (proposed model) push system 
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+  ̂ 2*h2  +  l%l ,M2+l  (4 -6 )  

For Tij = 0,1,...,— 1 and n2 = 0,1,... ,il2» 

[A + ̂2 * ̂^2 + ̂1 * ~ "2'"l)]-^"i»"2 ~ 

1,712 

+ ̂2* ("2+ 1)^711,712+1 

+ Si*min{R2 -n2 + l,ni + l)J'rai+l,7i2-l- (4-7) 

The boundary conditions are 

^-l,r>2 ~ " 

•Pni.-l = " 

PRl+l,n2 = " 

® 

As in the case of the previous model, the stationary probabilities can be derived 

and the system performance measures of Section 2.5 calculated. 

4.3.1 Results 

In this section we will present a sample of our numerical results to show that 

this new method is not only very efficient in terms of computer time and storage, 

but also provides very accurate results. 

As is shown in Table 4.2, there is excellent agreement between the performance 

measures based on the two models, under a variety of parametric conditions, at 

least in the case of two stations, and so our simpler modeling of the open queueing 

systems with blocking appears to be supportable on the basis of the evidence. 
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Table 4.2: System performance under a variety of parameters for the usual and 
proposed models 

Parameters Usual model Proposed 
Ri R2 A S2 Pouti h SE PTUti h SE 
4 6 .13 .40 .30 .6484 .4332 .8114 .6484 .4332 .8114 
4 6 .13 .65 .05 .0736 2.5943 .3563 .0736 2.5943 .3563 
1 3 .13 .20 .50 .8473 .1576 .9324 .8473 .1576 .9324 
1 3 .13 .10 .60 .9070 .0942 .3345 .9070 .094^ .3345 
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5 DUALITY BETWEEN PUSH AND PULL 

Duality in queueing theory has been discussed in the literature since the late 

1950s. Foster[12] considered the number of customers as a dual to the number of 

waiting spaces, since the number of waiting spaces decrease by one as the number of 

customers increases by one. Gordon and Newell [15] defined the duality in tandem 

queueing as reversing the order of service in the primary system. Muth [27] dis­

cussed the reversibility property of production lines, proving that the total time for 

processing n dissimilar items through k dissimilar stations does not change when 

the order of the station is reversed. 

In this chapter, the dual relationship between the pull system and a corre­

sponding "specially defined" push system is investigated. A definition of the term 

"dual" pertaining to this case is presented and discussed. 

5.1 Specially Defined Push system: (Dual Pull) 

As stated before, units are "pushed" to the first "supplier side" station with 

pre-planned rate A and processed in the subsequent stations till they leave the 

system at the final "customer side" station. The specially defined push system is 

built on the following assumptions; 

1. The supply will stop if the capacity of the upper-stream station is reached. 
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2. A particular station will only process units that can be transferred directly 

after processing to the subsequent station. That is to avoid producing units 

that are not needed (the JIT concept). 

3. The time between supplies and the processing times are exponentially dis­

tributed. 

4. The last station can process any number of units without constraint (units 

will be removed and shipped, which is another JIT concept). 

5. The transportation time between stations and the warm-up time of machines 

are negligible. 

6. The supply time distribution is independent of the station processing time 

distributions. 

7. The stations processing times are statistically independent of each other. 

Now, the duality concept between the pull and push system is explained in the 

form of a binary comparison (see Table 5.1). 

Figure 5.1 shows the transition diagram of a two-station specially defined push 

system, which could be compared to Figure 2.2 to illustrate the above comparison. 

The equilibrium equations for this system are: 

For ni = 0,..., 

[^1 * Ml + ^2 * rnin{Ri - ni.Ag)] Pni,R2 = 

+ h * in + ̂ )Pni+l,R2 (5.1) 
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Table 5.1: Duality concept between Pull and Push 

PULL 
• The supply is infinite. 
• Demands stops when customer 
side station is empty. 
• Units are "pulled" from 
final station at rate A 
• The direction of flow of 
information is opposite to the 
flow of material. 
• Supplier side station is 
station number one. 
• The effective rate of replenish­
ment of an intermediate station 
depends on the deficit 
at this station and the number of 
units at the previous one. 

• The storage is positioned at the 
front of the processing facility. 

PUSH 
• The final storage is infinite. 
• Supply stops when supplier 
side station is full. 
• Units are "pushed" to the 

f i r s t  s t a t i o n  a t  r a t e  X  
• The direction of flow of 
information and material are 
the same. 
• Customer side station is 
station number one. 
• The effective rate of prod-
ction of an intermediate station 
depends on the number of units 
at this station and the deficit (free 
space) at the next one. 
• The storage is positioned at 
the back of the processing facility. 
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Figure 5.1: Transition diagram of two-station push (dual) system 
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For ni = 0,1,..., 

and 712 = 0,1,, R2 — 1 

[A + ^2 * Tij + ^2 * ~ ^l)^2)]^i,%2 ~ 

^^ni,n2-l 

+ ^1 *("1 +I)^ni+l,n2 

+ «2 * min{Ri - + 1,112 + 1)^^1-1,722+1 (5.2) 

The boundary equations are 

^-1,7.2 = 0 

^«1,-1 = 0 

^H,+l,n2 = " 

Pni,JÎ2+l = " 

The above system is solved for the stationary joint probability distribution using 

any of the previously mentioned methods. 

Comparing Figure 2.2 for the pull system with Figure 5.1 for the push system, 

and also comparing the joint probability distributions. We can deduce that the state 

joint probabilities for the two systems are complimentary in the sense that, 

Pn^,712,"-,TIN ~ ^Ri—Tii,R2~Ti2,'--,RN—nN 

Complementary is extended to performance measures in the following three 

sub-sections. 
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5.1.1 The Extremal Probabilities at Extremal Stations 

In the pull system this measure is expressed as: 

^outnj — S 
U N - i  ni 

Substituting their compliments for the joint probabilities yields 

So, we can say 

~ ^711,719,...,ilAT 

which is the equivalent measure for the push system. The interpretation here is that 

just as we can't fill any demand if the final station is out of stock in the pull system, 

we can't accept any "shipment" if the first station is full in the push system. 

5.1.2 The Average Number of Units at Extremal Stations 

In the pull system this measure is expressed as: 

Tljy nj 

Substituting their compliments for the joint probabilities yields, 

= -'^N)PRi-ni,R2-n2,...,RN-nj^ 

So, we can say 

I n  =  R n - H  •••Z]^iV^ni,n2,...,n^ 
UN ^1 



www.manaraa.com

88 

The second term in the above equation is the average number of units at the first 

staion for the push system, which is complementary of the average number of units 

at the final station for the pull system. 

5.1.3 System Responsiveness 

This measure is defined in the pull system as: 

SE = M < ^l) 

^1-1 ^2 
=  y -  S  S  • • •  S  

nj^=0 712=0 njy=0 

Substituting their compliments for the joint probabilities yields, 

R2 Rn 

n]^=U 712=0 nj^=0 

Ç  R l — 1  R o  i 2 j v  
= É1 T V VP 

A Z-^i?l-ni,n2,-,n^ 
n^=0 712=0 7ijy=0 

_ 6\{Prob 71^ > 0) _ _ 

which is the equivalent measure for the push system. It is the ratio of the effective 

production rate at station one to the supply rate. 
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6 TREE STRUCTURES UNDER PULL 

In the previous chapters, the series structure was employed in all our modeling. 

The series structure models, conveniently, the transfer and the assembly lines where 

machine or assembly processes take place in sequence. 

However, there also are situations, often traceable to management decision to 

make certain parts in-house, where machine and assembly processes in effect form 

confluent tree-shaped structures, in which the parts successively are made, and fed 

to sub-assembly, and then assembly, stations (see Figure 61). 

6.1 The Model 

The above situation will be modeled under the same basic assumptions as those 

for the series model (see Section 2.2.1). Additional assumptions concerning the tree 

structure are as follows: 

1. If the product associated with station i is called product i, then assume that 

one unit (container) of product i and one of product j are required to make 

o n e  u n i t  ( c o n t a i n e r )  o f  p r o d u c t  i j .  T h e  s a m e  i s  t r u e  f o r  p r o d u c t s  i j  a n d  k  

with respect to product ijk. See [5]. 

2. Assume that when a demand withdraws a unit from station ijk, a signal 

(Kanban) is sent to both station k and ij requiring replenishment. The two 
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Figure 6.1; Tree structure of 5 stages 

corresponding units are moved witiiout delay to the production area of station 

ijk, and after an average time of the newly assembled unit is deposited 

in the local storage of station i j k .  The analogous modeling assumption applies 

to the assembly of products i and j at station ij. (A technical feature of the 

stochastic modeling here is that the two component units of a unit under 

assembly are seen as belonging to the two origin stations until assembly is 

complete.) 

Figure 6.3 illustrates the transition diagram for the simple tree structure shown in 

Figure 6.2, with maximum station capacity of R equal to two at each. 

The general stationary equations for this simple tree structure are shown below. 

For rej = iîj — 1,... ,0 , 712 = ^2»^2 — 1, - ,0 

and «3 = 0 

[^1(^1 - «1 ) + ^2(^2 - *2) + S^Tnin{ni,n2,% - n^)\ = 

- ("1 - -1,^2,0 

+ ^2(^2 - ("2 ~ 1)) ̂ 1,712-1,0 
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Figure 6.2: Simple tree structure of 3 stages 

712,1 (^'^) 

For nj =— 1,... ,0 ,n2 = •R2>^2 ~ 

and ^3 = Ag, JRg — 1,..., 1 

[A + - T i i )  +  S 2 { R 2  -n2) + ^3m»n(ni,n2,/23 - '^3)1^^1,7*2 ~ 

^l(^l " ̂ 1 + I,n2,n3 

+ ̂ 2(^2 -^2 + I)^ni,re2-l,n3 

+ <53171171(712 + 1,712 + l,iÎ3 — 713 4- l)f 7^2 + 1,712 + 1, R3 — 1 

^•'711^,712,«3+1 (^'^) 

and the boundary conditions are: 

^-l,7»2,n3 = 0 

^ni,-1,713 = 0 

^711,712,-1 = 0 

+1,712,^3 ~ ® 

^711,^2+1,7:3 ~ ® 

^7^1,712,^3+1 ~ ® 
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o ù Z  o ol OO'O 

Figure 6.3: Transition diagram of the simple Tree structure 
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6.2 Production Optimization of Confluent Configurations 

Given these fixed capacities, the question remains of assigning production rates 

to each station. Well designed production rates will assure the smooth flow of 

product, with the final station's local storage rarely out of stock. As in Section 

2.7.2, the constraint of constant sum of production rates is used, with the Hook and 

Jeeves algorithm employed for finding optimum rates, and the results verified using 

a quasi-Newton algorithm. Following are the results and comments pertaining to 

the configuration given in Figures 6.1, 6.2, 6.4 and 6.5. 

6.2.1 Symmetric Configuration 

Generally, with a simple system as in Figure 6.2, or a more branched "sym­

metric" one, as in Figure 6.4, the probability of stockout is minimized when the 

production rates of stations on the same level (as i and j ) are "balanced" (i.e., 

equal if the station capacities are equal, and, in the case of unequal capacities at 

the origin stations, a lower optimum production rate assigned to the larger-capacity 

station). 

6.2.2 Asymmetric Configurations 

In the case of asyrtunetric layouts (see Figures 6.1, 6.5), the relationships are 

s l i g h t l y  d i f f e r e n t .  T h e  o p t i m u m  p r o d u c t i o n  r a t e s  a t  t h e  e q u a l - c a p a c i t y  s t a t i o n s  i j  

and k of Figure 6.1, or at stations m and n of Figure 6.5, are not equal as before. 

The reason is to be found in the relative position of these stations in the system. 

The stations that are preceded by other stations in the line need higher production 

rates to overcome fluctuations in the duration of production in preceding stations. 
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7 

Figure 6.4: Seven stages tree structure 

m n  

Figure 6.5: Four stages tree structure 
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Table 6.1 shows the optimum production rates for the five stations of Figure 6.1. 

6.2.3 Sub-Configuration Modules 

"Separability" is always to be hoped for. To what extend, then, is it possible 

to analyze sub-configurations or "modules", in order to predict their behavior as 

part of the larger configuration? To explore this effect, the optimum allocations 

of production rates among the five stations of Figure 6.1 and the four stations of 

Figure 6.5, are found, using the previously mentioned algorithms. The second step 

is to fix the sum of the optimum production rates of stations z, j and ij (Figure 

6.1) at its optimum value, and then to optimize the three production rates of the 

corresponding (z,j, ij)-module (Figure 6.2) The analogous steps are taken for two-

station (/,m)-module of Figure 6.5, and the results are recorded in Tables 6.2, 6.3. 

From these results we deduce that: 

1. the Modular analysis appear, at least for small systems, to reproduce reason­

ably well the character of the underlying non-modular analysis. In particular, 

2. Symmetric modules appear to retain the "balance" features of optimal pro­

duction rates obtained under non-modular analysis. 

3. Series modules appear to retain the "funnel effect" obtained under non-modular 

analysis. 
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Table 6.1: Optimum production rates for five station tree configuration 

11 S3 ^4 
Ri = R2 = Rz = RA = Rz = ̂  .116 .153 .115 .150 

Ri = R2 = Rz = Ri = jRs = 2 .119 .155 ,116 .142 
Ri = R2 = 2, R3 = R4 = Rs = 1 .072 .163 .147 .196 
Ri = R2 = Rz = 2, R4 = Rs = 1 .080 .120 .163 .206 

to
 

II II II II II to
 

.147 .178 .075 .103 
Ri = R2 — R5 = \. Rz = Ri = 2 .135 .164 ,068 .147 

Table 6.2: Modular and non-modular analysis for a three-station module of a five-
station configuration 

Five Stages Three Stages 
Ri R2 Rz E i S i  S2 S3 S2 ^3 
1 1 1 .3928 .1188 .1188 .1553 .1203 .1203 .1522 
1 1 1 .3847 .1159 .1159 .1528 .1178 .1178 .1491 
2 2 2 .2800 .0803 .0803 .1200 .0828 .0828 .1144 
2 2 1 .3072 .0722 .0722 .1628 .0753 .0753 .1566 
2 2 1 .3200 .0769 .0763 .1669 .0781 .0781 .1638 
1 1 2 .4712 .1469 .1469 .1775 .1481 .1481 .1753 

Table 6.3: Modular and non-modular analysis for a two-station module of a four-
station configuration 

Four Stages Two Stages 
Ri R2 EiSi 61 S2 S2 
1 2 .4641 .2231 .2409 .2216 .2425 
2 1 .3034 .0941 .2094 .0975 .2059 
2 1 .3766 .1216 .2550 .1156 .2609 
2 2 .3491 .1503 .1988 .1469 .2022 
1 1 .4425 .2025 .2400 .1966 .2459 
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7 CONCLUSIONS AND EXTENSIONS 

In this thesis we have developed a stochastic model of the multi-stations pull 

production system. Attention was restricted to Markov continuous-time modeling, 

with work stations imagined to consist of a processing function and a local storage 

function of given capacity (JÎ). General stochastic modeling assumptions were as 

follows: 

1. Processing times are exponentially distributed, with effective processing rate 

responsive to local storage levels. 

2. Time between demand pulls or supply pushes is exponentially distributed with 

fixed rate. 

3. The transportation time between stations, and warmup time of machines, are 

negligible. 

Modeling variants studied within the above shared general frame work were: 

1. work station discipline 

• One-at-a-time 

• Several-at-a-time 

2. process configuration 
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• Series 

• Confluent (tree structure) 

3. Lot size 

• Lot size = 1 

• Lot size I 1 

Although processing and demand times are assumed exponential, the limitation 

imposed by storage capacity will cause the output process not to be poisson. For 

this reason, closed form solutions for equilibrium probabilities of the system v/ere 

not available and numerical methods were investigated, and compared. 

The model was then studied and analyzed in the light of the following measures of 

system performance. 

• Probability that the last station is out of stock, 

• Mean number of units at the last station, 

• System responsiveness, which is the effective production rate at the last station 

in the case of pull, and at the first station in the case of push. 

Since allocation of resources is an important issue in production planning, optimal 

allocation of station capacity (Knaban units) and production capacity were in­

vestigated. Regarding station capacities, the optimum allocation of exhibits a 

"funnel pattern", with higher capacities allocated downstream. Further, uniform 



www.manaraa.com

99 

allocation can be achieved by controlling the ratio of production to demand rates. 

Regarding production rates (work elements and personnel), high system perfor­

mance is achieved by assignments of work elements and/or personnel uniformly 

among stations if the ratio of the average production rate to the demand rate is 

less or equal to 1. However, with the same ratio greater than one, the optimum 

allocation tend to be achieved by assigning higher production rates toward the 

downstream station (another "funnel effect"). 

When the several-at-a-time discipline is compared to one-at-a-time, the first showed 

lower probabilities of stockout and a higher average number of units at the down­

stream station, while the second showed better system responsiveness. 

With respect to the effect of lot size, is studied, it was found that economic consid­

erations must be taken into account in choosing the proper lot size. 

In this study, a "confluent" production system was taken to be one where "made" 

parts are processed in-house into subassemblies, and then into final assemblies. Op­

timum resource allocations were studied for confluent systems, and the possibility 

explored of analyzing a confluent production system through its sub-system "mod­

ules." 
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The traditional "push" system, was also modeled under the same stochastic as­

sumptions. Here it was assumed that the demand rate is accurately forecast, and 

that material is pushed at a corresponding rate to the stations downstream. In 

comparing the push and the pull systems, it was concluded that; 

1. Pull systems tend to outperform push systems. 

2. However, with low production rates (lower than demand (for pull) or supply 

(for push)rate ), that is, in the case of "under powered" systems, and for small 

station capacities i2, push systems can outperform pull systems. 

A duality phenomenon between the pull and a specially defined push model was 

presented and discussed. 

Extensions During the course of this study numerous other questions 

arose and remain unanswered. Some of these are given below: 

1. Investigation of models with non-exponential production time distributions. 

2. When optimum resource allocations were studied, these were separated into 

two problems, one a discrete problem concerning the optimum allocation of 

station capacities and the other a continuous problem concerning optimum 

allocation of production rates. An algorithm to combine both optimization 

problems in one might be a possibility. See [14]. 
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3. Define other performance measures, in terms of system utilization or waiting 

times and investigate optimum resource allocations in terms of these, as well 

as comparing push to pull systems in the light of these new performance 

measures. 

4. Expand on the idea of modularity in tree structures, and how it might be 

utilized in simplifying the solution of branched systems. 
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